Three-Dimensional Plotting on a Two-Dimensional Surface

S. K. Skedzeleski

Communications Systems Research Section

Data collected over a two-dimensional surface are often test-displayed as a
surface whose height above the plane represents the function’s value at the
corresponding coordinates. One algorithm for producing such a plane is described,
using horizontal lines to define the surface. It has been implemented as a
FORTRAN subroutine on the SDS 930 computer.

|. Introduction

It is often desirable to display data which are a func-
tion of two variables as a surface whose height above the
coordinate plane represents the function’s value at the
corresponding coordinates. A very simple algorithm has
been used for several years to display the results of radar
mapping, but it has been done ad hoc and built directly
into each program as it was needed. A FORTRAN sub-
routine -which is very brief, both in time and space, has
been written to do this plotting on the SDS 930 computer.

The subroutine, DDD, takes data one line at a time (in
the constant Y direction) and outputs line segments to
the plotting routines that are available on this system,
One initialization call is needed to set the boundaries of
the plot, and such information is passed in blank COM-
MON. It would be better to logically separate it in a
labeled COMMON block, but RTFTRAN on the 930
computer does not have that capability.

80

Il. The Algorithm

For reading clarity, the following notation is used:

fry the function value at (x,y)
Zey Yt ey
NX number of points in the x direction

Ax spacing between sample points in the X
direction

Ay spacing between sample points in the Y
direction

The algorithm used in DDD is very simple. For each
point (x,y) a line segment is drawn from (x — Ax,z;_ary)
to (x,z,,). The first point of each line is handled differ-
ently from the rest of the points since the pen is merely
positioned there. This algorithm does not conceal hidden

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-29

lines. A first-order improvement is easy to implement by
keeping track of the maximum value of 2z, for
each X' = Xyin, Xmin + AX, ", Xmar, OVEL Y = Ymin, Ymin T+
AY, ***, Yeurrent (initially zero). This is done in the array
ZMAX (length NX). If the current point is hidden (i.e.,
Zey < ZMAX,), then do not draw the line segment, but
move the pen to (x,z,,) with the pen up. This produces
acceptable plots when the grid size is not “too large.”

An improvement that is used in DDD is to try to deter-
mine at what point a line disappears and to draw the
visible portion of the line segment (x — A%,2,_ary), (%,2:.0)-
This is implemented by keeping an extra array of length
NX, called ZMAXPREDECESSOR. ZMAXPREDECES-
SOR gives the position of the other end of the line seg-
ment drawn to ZMAX, for each x position. (This is not
totally true. If the line segment just drawn is a partial
line segment—because the previous point was a'hidden
point—the value is still z,_a;,, not the point at which
this line segment became visible). One more value,
ZLAST (= %,-asy), is needed to calculate the point at
which lines became visible and hidden. There are two
cases which must be considered: a line disappearing and
a line reappearing.

In Case 1, the current point is hidden, but the last
point was visible (line disappearing). In the drawing be-
low, the line segment (z.,z;) was drawn previously; z,
was the last point, and z, is the current point. We wish

to add the line segment (z,,c) and then move the pen to
z, with the pen up. Setting z, = ZMAX(x — ax), z, =
ZMAXPREDECESSOR,, z, = ZMAX, and z, = z.,, we
see that we must have z, + a (2, — 1) = 2, + a (25 — 2,),
where « is the fraction of Ax from x — Ax to Ax where the
line segments cross. Solving for o we get a =z, — 2./
2, — 2, + 2, — 2z, which gives the crossing point ¢ =
(x —Ax+tacx, 2+ a(zs — zz)).

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-29

In Case II, the current point is visible, but the last
point was hidden (line reappearing). In the drawing be-
low, the line segment (z,z,) was drawn previously; z,
was the last point, and z, is the current point. We wish

to move the pen (still up) to point ¢, then move to the
point z, with the pen down. Setting z, = ZMAX, 4,
z, = ZLAST, z, = z,, and z, = ZMAX,, we can substi-
tute into the formula in Case I and determine point c.

A. Caveat

It should be noted that this method of removing hidden
lines is not foolproof. There are situations in which it will
cause a line segment to extend past another already
drawn. Specifically, if between x — Ax and x the line seg-
ment which ends at (x, ZMAX,) is not above all other line
segments in that interval, an error can occur (see follow-
ing sketch). The line segment drawn should be hidden,

WILL BE DRAWN

\

EXISTS

yet DDD will draw it. In practice, this situation does not
seem to occur often enough or with enough visual impact
to justify doing a better job than is now done. However,
it was found that by simplifying this procedure further
by not keeping track of ZMAXPREDECESSOR and using
ZLAST instead, obnoxiously visible crossings were occur-
ring on almost all transitions from visible to hidden
points. Hence the current degree of detail.

81

B. Sideviewing

The algorithm described so far is for a view of the
surface which is directly in front of and slightly above
the surface. The angle of view depends on rate of change
of Y with vertical height and hence is essentially pro-
grammable. With certain kinds of data it is necessary to
view the surface from a slight angle instead of head-on.
One method of doing this is to offset each line in con-
stant Y by one or more Ax positions. It is then possible
to “peek around” tall parts of the surface. It is easy to
modify the algorithm described so far to allow this. It
suffices to keep ZMAX indexed on the position of the
plotter, rather than having it coincident with a given x
position. The points are then plotted at x + X,f7sr, and
Xofsse: 15 incremented as each line is finished.

C. Edge Lines

If only horizontal lines are drawn, as in DDD, the line
segments will be dangling on each end. It is particularly
annoying on the near edge when side viewing is used,
since this is where the eye expects to see the effects of
“slicing” this portion of the surface from the entire sur-
face. By adding a line segment from the last point of the
current line to the last point of the previous line, the
edges are effectively tied down. The edge on the far side
is more difficult to connect since there are noticeable
(bad) effects from connecting hidden points.

Ill. User’'s Guide

To draw a surface containing NX by NY points, NY + 1
calls are made to DDD. The first call initializes variables
used by DDD, and the remaining calls actually draw the
surface. Before the first call is made, the following vari-
ables in COMMON must be given values.

82

COMMON XLIM,YLIM NX,XSCALE,
IYDELT,IROUTE,IERR

XLIMYLIM the boundaries of the plotting area (in

inches for the plotter)
NX the number of points across a line

XSCALE scaling factor applied to f,,. It is used to

adjust the height of each value above the
baseline

IYDELT the number of Ax positions to shift each

line, for side viewing

IROUTE mustbesettol

Calling Sequence:

Call DDD (ARRAY,NY) ARRAY is the
array of NY data points to be plotted.

The first call to DDD returns the follow-
ing values:

IROUTE
is set to 2
IERR

returns to O if the arrays in DDD are
large enough to handle this plot, 1 other-
wise. Currently there can be 512 Ax posi-
tions across the entire page (not across
just one line of the plot).

Each succeeding call to DDD draws one
line across the plot.

To restart DDD, set IROUTE to 1, and reset any
variables that need to be changed. DDD does not auto-
matically advance to a new sheet of paper or do any “non-
standard” centering of the plot on the page.

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-29

